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The main paper contains detailed sketches of the proofs of the identification results. This Online
Appendix further formalizes these arguments and presents the regularity condition. The Appendix
also offers a simulation and an estimation analysis for the running example (Example 1) in the

main paper. It finally adds additional details and results to the empirical application.

A. Proofs

A.1. Proof of Proposition 2.1

For an irreducible, finite-state, continuous Markov chain, the equilibrium g exists, is unique and has
full support. Thus, we only need to prove that Assumptions 2(i) and 3(i) imply that the Markov

chain induced by our model is irreducible. Note that

Po(v]y) =3 0y Ra(v |y, NRe,C) Cu (C |y, NCo, V)

Assumption 2(i) implies that given any y, any v is always considered with a positive probability by

any Agent a. Assumption 3(i) then implies that any option is picked with a positive probability if
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considered. Thus, 0 < P, (v | y) < 1 for all a and y, and we can go from one configuration to the

other one in less than A steps with a positive probability.

A.2. The Regularity Condition

We formally state and discuss the regularity condition needed for the identification of the network
in Section 3 of the main text of the paper. The aim of this condition is to eliminate some ties that
would only arise under very unlikely situations —that we describe in the paper.

For a given a € A, define the set of all possible values that NRY (y) and NC(y) can take:

Nre, = {(NRY(y),NC)(v)) : y € Y}

In addition, define P, (v | nr,nc) as the probability that Agent a picks option v # 0 conditional
on (nr,nc) € Nrc,, where nr? and ne” denote the number of peers that affect preference and

consideration, respectively, picking alternative v’, with v" € Y\ {0}. That is,

P,(v|nr,nc) =Y R, (v | m“c,C) C, (C | nc,)),
cQy

where nr¢ = (nr”/> —— and
v

Ca(CIne,Y) =[] Q' [ne”) T] (1-Qu(" | nc”)).

v'eC W EV\C

Let A, f(x,y) denote an operator that computes the increment of a given function when the
v-th component of x and the v’-th component of y are increased by 1, respectively. We use the
convention that if v = 0, then x remains unchanged. Similarly, if v" = 0, then y remains unchanged.

The next assumption describes the "regularity condition".
Assumption 5 (Regularity Condition). For any a € A,

(i) there exist v € Y\ {0} and a vector of aggregate peers’ choices (nr,nc) € Nrc, such that

A,,InP,(v | nr,nc) # 0;

ii) there exist three sets of alternative pairs and aggregate peers’ choices, i.e., {v;, w;, nr;, nc; },
gereg
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with v;, w; € Y\ {0}, v; # w;, (nr;,nc;) € Nrc,, and i = 1,2, 3, such that

Ay, 0A, 01n f’a(vl | nry,ncy) # 0,
A07w2 AvQ,O 111 ].Sa(vg | nro, HCQ) 7é 0, CLTLd

Aws,wsAv&O In 15&(”3 | nrs, Ing) 7é 0.

Assumption 5(i) ensures that peer effects in consideration and preferences do not cancel out.
This guarantees that peers that affect both consideration and preferences can be distinguished from
those who are not in the reference group of Agent a. Assumption 5(ii) is needed to distinguish peers
who affect consideration only from those who affect preference. Specifically, for consideration-only
peers, the double shifts described above are always zero. The conditions in Assumption 5(ii) ensure
that the double shift in the observed CCPs is nonzero for peers who affect preference in any of the
three key scenarios contemplated by Assumption 5(ii).

It is worth emphasizing that the inequality in Assumption 5(i) is only required to hold for
one configuration of actions and peers. Additionally, Assumption 5(ii) allows v; = vy = wvs,
w; = we = wy, and (nr;,nc;) = (nry,ncy) = (nrz, ncz). Furthermore, as the number of peers
and/or the size of the menu grow, it gets harder to violate Assumption 5. Therefore, Assumption 5
is a mild functional form restriction that is usually generically satisfied.

The following example clarifies the scope of Assumption 5.

Example 1. Suppose that
wy(nry)
ZU’GC Uy (nm/) ’

R, (v | an,C) =

where ug(nrg) = 1 and u,(-), v € Y\ {0}, are strictly monotone positive functions. That is, after
the consideration set is formed, Agent a picks alternatives according to a logit-type rule.
Then, for the binary choice case, i.e., Y = 1 and v = 1, we have that
= up (nr'
P.(v | nr¥,nc") = Q, _w(rt)
In this case, Assumption 5(i) is violated if, for all admissible values of nr” and nc, the following

equality holds:

Q,(w|nc’+1)  w(nr’) 1+u(nr’+1)
Q, (v|ner)  T4ui(nre) wy(nre+1)
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A larger peer group makes it harder for this equality to hold for all values.
We also illustrate that the same conclusion holds with a larger menu of choices. Specifically, if

we add one more alternative v’ = 2, then

P.(v | nr¥,nr”  ne’, ne’) = Q, (v | nc*) Q, (v/ | nc”/> e UI(;;;S;L:_ )uQ(m“”’)
+Qu (v ne") (1= Q, (v'] ”Cv/))%
o) T lor) 1 0, (1) i
= Qu(v]nc) 1+ uy(nr?) 1 4 ug(nrv) + ug(nrv’)

So Assumption 5(i) is violated only if, for v € {1,2}, A,,InP,(v | nr,nc) = 0 for all admissible
values of nr and nc. To illustrate how strong this condition is, note that a violation at nr = nc =0

would indicate that

Q, (v]1) 1 ur (1) 1+ uq(0)

(
RN CIT I TSR C)
Lm0 () ()4 [1-Q, (0| 0)]w(0)
1+ uq (1) + us(0) L+u (1) +[1—Q, (v ] 0)]ug(0)

for v € {1,2}. Also, if Nrc, is rich enough so that it contains nr = (0,0), nc = (0,1), and
nc’ = (1,1), then we can switch from Q, (v | 0) to Q, (v" | 1) without changing other parameters.

Hence, we should also have that

ur(1) 1+ u(0)

1) (

"o w0 M T a® @)
ol 1+ ui(0) +ug(0) o 1+u(0) +[1—Q, (v | 1)]us(0) —0
14wy (1) + ua(0) L+u (1) +[1-Q, (v | D]ua(0)

The last two equalities imply that

1+u(0)+[1—
L+u (1) +[1—

_ 14+ w(0) 1 = Q, (v [ 0)]us(0)
L+ u (1) +[1— Q, (v | 0)] uz(0)
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The latter is possible if and only if Q, (v' | 0) = Q, (v | 1), which violates Assumption 2(iii).
Note that Assumption 2(iii) also establishes that

Aoy oInP,(v]0,0) #0,



which guarantees Assumption 5(ii) for i = 2. Assumption 5(ii) is a bit more general. Specifically,

violations of Assumption 5(ii) for case i = 1 mean that the following equations hold

Ay oAy oInPy(v | nr,nc) = 0,

Ay oAy olnP,(v' | nr,ne) = 0,

for all combinations of the choice configuration nr and nc, including nr = 0 and nc = 0. The
set of equalities increases with the size of the peer group and/or the set of alternatives, making

violations harder to arise. A similar logic carries to case i = 3.

A.3. Proof of Proposition 3.1

Fix some a € A. We will prove that

P,
d g N, — P<(U’|y/)> =1 for all v, and y,y’ that are different in the a’th component only.
a\V]Y

The “only if” part is straightforward. To show the “if” part, assume, towards a contradiction, that

o (v]y)

P
m =1 for all y,y’ that are different in the a’th component only,
a\V Y

and a’ € N,. Let y? denote the vector in which the z-th component of y is replaced by v.
Note that the observed CCP can be expressed as

Pu (v ]y) = Qu (0 | NCL (%)) % Yy Re (0] NREE ()€U {0}) € (C | NGV (), 2\ {0},

where the first component only depends on the number of consideration peers selecting alternative v,

and the second component depends on the whole vector of the number of preference peers’ choices.

If « € NC, \ NR,, then
P,(v|0y) Qu(v|1)

P.(0]0) Q(]0)7 "

where the first equality holds by Assumption 2(ii) and the fact that NC; (0) = 0 and NC; (02,) = 1.

(It also follows as the change of Agent a’’s choice does not affect Agent a’s preference towards any

alternative.) The last inequality follows from Assumption 2(iii).



Similarly, if a’ € N'R, \ NC,, then

P,(v]0%)  Yecyw Ra (v | NREMH(05),CU{v}) C, (€| NCYH(0), 9\ {v})
Pa(v[0) Yoy Ra (v NS (0),C U{0}) Ca (€I NCY(0), 1\ {0})
Yecyo) Ra (v 0L,C U {v}) Ca (C| 0,9\ {v})
Secyvo) Ra (v]0,CU{v}) C, (C0, P\ {v})
zxw@JRaUuﬁﬁu{w»—mmwoxu{wﬁcaw\my\wn

- Secoin o (0] 0.CU{0}) Ca (€0, {0]) o
41

where the first equality holds because the probability of considering v does not change when
switching Agent a’s choice from 0 to v. The second equality holds by Assumption 2(ii) and 3(ii).
The last inequality holds since

2_con ) {Ra (v105.CU{v}) = Ra(v]0,CU{0}) | Ca(C|0.Y\{v}) #0

by Assumption 3(iii). Hence, the only remaining possibility is a’ € NCR,. But the latter
contradicts Assumption 5(i), since ' € NCR, would imply that the consideration peer effect offsets

the preference peer effect everywhere over the support. The contradiction completes the proof.

A.4. Proof of Proposition 3.2

Note that N, is identified by Proposition 3.1. Take any two distinct agents o', a” € N,. We will
show that a’ € NC, \ N'R, if and only if

Po(vlyar) _ Pa(v] (ya)a)
P,(v|y) P,(v|yy) ’

(1)

for all v € Y\ {0}, all w & {0,v}, and all y with y,» = y,» = 0. Thus, NC, \ N'R, is identified
from P,.

To prove the “only if” part note that if ' € NC, \ N'R, and y is such that y,, = yo» = 0, then

Q, (v NG (yar) +1) _ Qu (v [NC;(y) +1)

- _ 1= Q@ING(y) _ Q. (v|NC, (vir))
Q,(v|NCy(y)+1)  Q,(v|NCl(y)+1) Q, (v [NC'(y))  Q,(v|NC!(y))




where the first and the last equalities follow from the fact that w # v. Hence, since (y% )., = (y% ).,

a// -

we have that

Po (0| (ye)ir) _ Pa(v ] (vii)) _ Qu(v | NC; (yir) +1)
Po(v]ya) Po(v]ya) Q, (v | NC;(y) + 1)

 Zeom Ra (v [ NREP (), €U {}) Ca (€| NG (vi), 1\ {v})
Seenin Re (v NREW (v), € U{0}) Ca (€ NC (), 9 {0}

_ Qu (| NC; (yi)
Q. (v [NC} (y))

 Teongn Ra (v [ NREPO (v), €U {o}) Ca (€I NG v, Y\ {0})
Secon Ra (v | NREW (v).C U {0}) Ca (€| NC (), 0 {0}

_ Pa(v]yan)
Pa(vly)

To prove the “if” part, note that it is equivalent to the statement that if '’ € N'R,, then there
exist @’ € N, v, w, and y with y, # v and y,» & {v, w} such that

P, (v]ysn)
Po(v]y)

Py (v ] (ya)ar)
Pa (U | yg/)
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or equivalently

ALAY, InP, (v ]y) #0.

If " €e NR,A\NC,, thenlet i = 1. If a” € NC, \NR,, then let i = 2. Finally, if ¢’ € NCR,, then
let i = 3. Take v = v;, w = wy, and y such that yy = y,» = 0, NRY(y) = nr;, and NCY(y) = nc;

from Assumption 5(ii). Then

AwhOAm,O lnf_’a(vl | nrl,ncl) 7é 0if i = 1,

ALAG P, (v]y) = A0ALINP, (v]Y) = { Agu, Ao InPy(vs | nry,ncy) # 0 if i = 2,

Ay ws Dug 010 f’a(vg | nr3,nc3) # 0 if i = 3,

where the first equality follows from the exchangeability of the difference operator, the second
equality follows from the definition of P,, and the last inequality follows from Assumption 5(ii). So

in all possible cases, Assumption 5(ii) implies that if ' € N'R,, then there exist v, w, and y with



Yoo = Yo = 0 SU.Ch that
Pa (U | yz)”)

Po (v | (yo)ar)
P, (v]y) '

Po(v]ye)
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A.5. Proof of Proposition 3.3

Note that we know N, and N'R, (or NC, \ N'R,). To identify the rest of the network structure
(NR,\ NC, and NCR,), suppose that NC, \ NR, # 0. Take ' € NC, \ NR,. First, note that

Al InP,(v]0)=InQ,(v|1)—InQ,(v]0).
Thus, for any a” € N'R,, by Assumption 2,
AZ//AZ/ lnPa<U ‘ 0) 7£ 0 <— a” € NCRQ.

Hence, NCR, is identified from P,,.

Next, suppose that N'C, \ NR, = 0. Then, by Assumption 4, either NV, = N'R, \ NC, or
both N R, \ NC, and NCR, are nonempty. Since the consideration effect is nonzero, the effects
of preference-only peers and consideration-preference peers have to be different. As a result, we
can identify the partition of N'R,, M’ and M", such that one of its elements is NCR,. Since
INa| > 3 — |INC, \ NR,| = 3, we can take ' € M’ and a” € M". Next, take y such that y, = 0
for all @ # @’ and y,» = v. Next note that

P, (v|y) =P, (v] (y)) ) = (=)' RInQ, (v 1) = InQ, (v] 0).

Finally, take another a"” & {d’,a”} in either M’ or M"”. Without loss of generality, assume that
a" € M'. Note that, by Assumption 2,

AYyInP, (v]y)— AV, InP, (U | (yg,)zn) =0 < d" e NR,\ NC,.

Thus, we identify NR, \ NC, and NCR,.



A.6. Proof of Proposition 3.4

Fix a € Aand v € Y\ {0}. Assume first that |[NC, \ N'R,| > 1. Under this situation, the relative
consideration probability is identified via switching the choice of just one consideration-only peer
from alternative v to the default while keeping the configuration of others fixed. Specifically, take

a € NC, \ NR, and y such that every peer in N'C, picks v. Then

Pa(U’y) _ Qa(v‘ |Nca|)

Po(vlya)  Qu(v] INCo| = 1)

Next, redefine y as before except that we let one of the peers from NCR, to pick 0. As a result,

Pa(vly) _ Qu(v|INCa| —1)

Pa(”’yg’) Q. (v] INCa| — 2).

Repeating this procedure, we identify
Q.(v|n1)/ Qu(v|ny—1) for all ng € {INCo| — INCRa|, ..., |NCal}.

Next, we take y such that all peers in NCR, and one of the peers in NC, \ N'R,, different from
a’ are picking 0 and the rest of peers in NC, \ N'R, are picking v. Switching one by one all peers
in NC, \ N'R, we identify Q,(v | n1)/ Q,(v | ny — 1) for all n;.

We next show that the relative consideration probability can be identified even if the consideration-
only group is empty. Specifically, assume that [NC, \ N'R,| = 0, so we have INR, \ NC,| > 1
by Assumption 4. Then the relative consideration probability can be identified by switching one
preference-only peer from v to the default and one consideration-preference peer from the default
to alternative v. Specifically, take ' € N'R, \ NCq, a” € NCR,, and y such that every peer in
NCR, picks v and a’ picks 0. Then, comparing Agent a’s probability of choosing alternative v
between configuration y and a configuration of switching Agent a’ from 0 to alternative v and
Agent a” from alternative v to 0, which does not change the choice probability given consideration

because the number of peers affecting preference is the same in both scenario, we have

Povly)  _ QuUIING])
Py (vl (v2)en)  QalvlVCa = 1)

Next, redefine y as before except that we let one of the peers from NCR, different from a” to pick



0. As a result,
P, (vly) _ Qu(v[ [NCal — 1)'
Py (v (vo)er)  QalvlNVCal = 2)

Repeating this procedure finitely many times we identify Q,(v | n1)/Q,(v | ny — 1) for all
ni € {1,,‘./\/’Ca‘}

A.7. Proof of Proposition 3.5

Fix some a € A and o' € NC, \ N'R,. Moreover, take any distinct v,v" € Y\ {0}. Take any y such
that no one picks v’. Since we will only use the variation in choices of Agent a’, we drop the choices
of everyone else from the notation. For example, P,(v|v) is equal to P,(v|y), where y,, = v'. We
use t,, to denote the ratio between the probability that Agent a picks v’ conditional on Agent a’
choosing v’ and the default 0:

Po(v'[v") _ Qu(v'[1)

o = = 17
=Bl T Q) 7

where the second equality holds because we can cancel out the choice probability conditional on
considering v, and the inequality follows by Assumption 2(iii). Note that ¢,/ is identified from the
data.

Moreover,

Pa(v]0) = Qu(v'10) {Rg(v]v) = PL (v [ Y\ {v' D)} + Po(v [ Y\ {o'),
Pa(v]v) = Qu(v'[1) {Rg (v]v) = Po(v | Y\ {v'})} + Po(v [ Y\ {v'}),

where R (v[v") denotes the probabilities that Agent a picks v conditional on considering v'. Since,

Q,(v'0)t, = Q,(v|1), we obtain from the above two equations that

Py(v] 9\ fv)) = P~ PaltlO),

Since the choice of v, v/, a, @/, and choices of everyone else was arbitrary, we can identify P} (v |
y, Y\ {v'}) for all a € A, v/ # v, v' # 0, and y such that (i) y, # v’ for all @’ € N, and (ii) yo = 0
for some a' € NC, \ N'R,.
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Applying the above argument to P (-|-,V \ {v'}), we can identify P (v | y,V \ {v/,v"}) for
all a € A, v" # v, V" # v, v" # 0, and y such that (i) yo & {v/,v"} for all ¢’ € N, and (ii)
Yo = Yo = 0 for some a’,a” € NCo \ N'Rq, a' # a”.

Repeating the above argument |[NC, \ N'R,| times, we can identify P} (- | y,Y \ Z) for all
Z C Y\ {0} and y with the following two properties. First, y, ¢ Z for all «’ € N,. Second, if
we take any different |Z| components of y that correspond to peers from N'C, \ N'R,, then these

components have to be equal to 0 since we switched these | Z| peers to 0.

A.8. Proof of Proposition 3.6

Fix some v # 0. If Q, (v | ny) is known for some n; in the support, by Proposition 3.4, we identify
Q,(v | +). If, instead, we know R, (v | na, {0,v}), then, since |INC, \ N'R,| > Y, by Proposition 3.5,
we identify

Pi(v |y, {0,0}) = Q, (v | NC: (¥)) Ra (v | NRZ (3, {0, 0})

for some y such that NR (y) = ny. Hence, we identify Q, (v | NC. (y)) and, by Proposition 3.4,
we also identify Q,(v | -). Since, the choice of v was arbitrary, we identify Q,.
By Proposition 3.5, we now can identify R, (v | ng,{0,v}) for all v # 0 and ny in the support.

Next, consider

P (v ]y, {0,v,0}) =Q, (v | NCY (y) Q, (v/ | NCY () Ra (v | NRE (v), {0, 0}) +
+Q, (v [ NCY(y) (1= Q, (v | NCY (¥))) Ra (v | NRY (v) . NRY (y),{0,v,0'}) .

Since Q, and R, for binary consideration sets are identified, we identify R, for all possible sets of
size 3. Repeating the above argument, we identify R, for all possible sets of size 4. Applying this

argument finitely many times, we can identify R, for all possible sets.
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A.9. Proof of Proposition 3.7

Since lima_,0 P (A) = W, we can recover the transition rate matrix ¥V from the data. Recall that

each element in the transition rate matrix is defined as

0 if Yaeal (yé # ya) >1

w(y'ly) =
ZaGA )‘a Pa (y:z | y) 1 (y:z 7é ya) if ZaGA 1 (ya 7é ya) =

Thus, A\ Po (v | y) = W (y,,¥-a | ¥). It follows that we can recover A\, P, (v |y) for each v € Y,
y € Y4 and a € A. Note that, for each y € Y4,

Zvey)‘ cU]y) = )‘Zvey (v]y) = A

Then we can also recover )\, for each a € A.

A.10. Proof of Proposition 3.8

This proof builds on Theorem 1 of Blevins (2017) and Theorem 3 of Blevins (2026). For the present
case, it follows from these two theorems, that the transition rate matrix W is generically identified

if, in addition to the conditions in Proposition 3.8, we have that

(Y+1) —AY —1>

l\DM—

This condition is always satisfied if A > 1. Thus, the identification of W follows because A > 2.

We can then uniquely recover (P,),. 4, and (Aq),c 4 from W as in the proof of Proposition 3.7.

B. Simulation and Estimation of the Running Example

This section offers Monte Carlo simulation and estimation results for Example 1 in the paper. This
exercise aims to show that with a rich dataset the primitives of the model can be estimated by

following our main identification strategy step-by-step. Specifically, if we have enough observations,
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we can first reliably and nonparametrically estimate the CCPs for each agent using a frequency
estimator. Then, we can use these estimates to recover which peers are in the consideration and
preference group of each agent —by following Propositions 3.1- 3.3. With the network structure
being estimated for each agent separately, we can then estimate the choice probability and the
consideration mechanism following Propositions 3.4- 3.6. We show later that when the dataset is
not long enough one could implement a parametric version of this approach.

Simulation Design Recall that there are four agents and three alternatives (i.e., A ={1,2,3,4}

and Y = {0, 1,2}). The reference groups for consideration and preferences are as follows
N61:{273}, NCQZ{l}, NC;J,:{Q}, NC4:®

NRy={3}, NRy=0, NRs={1}, NR,=0.

We specify the preferences of the agents and their consideration mechanisms as follows. For all
aand v € {1,2},
1/4 ifn=0

Qu(v[n)=193/4 ifn=1

1 if n=2.

As in the paper, the default 0 is always considered.
The mean utility for all a, v € {1,2}, and C is

3 ifn=20

Ugwe(n) =149/2 ifn=1

5 ifn=2.

The mean utility from the default is normalized to be 0 regardless of how many peers choose the
default. We assume the payoff shocks are generated by a Type I extreme value distribution, so
the choice probability has the logit form. Note that the agent’s previous choice does not affect her
consideration probabilities or preferences.

We can calculate the implied (population) CCPs of Agent 1 as a function of choices of Agents 2
and 3. To simplify the notation, we ignore the previous choice of Agent 4 in the choice configuration

y as it does not affect the CCPs of Agent 1. For example, when the previous choices of Agents 2
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and 3 are the default, the probability that Agent 1 selects option 1 is

exp (3)
Py(v=1](0,0)) = 11(0,0))(1 — 11(0,0 —
1(0=11(0,0)) = Qi(1](0,0)(T —Q(1](0,0))) T+ exp (3)
prob of considering{0,1} —
prob of choosing 1 when considers {0,1}
exp (3)

+ Q1 ](0,0))Qy(1](0,0))

prob of considering{0,1,2}

1+ exp (3) + exp (3)
prob of choosing 1 when considers {0,1,2}

A~ 1/4x (1—1/4) x 0.9526 + 1/4 x 1/4 x 0.4879 = 0.209.

Similarly, we can calculate the CCPs for other configurations of y and alternative 2.

Simulation Procedure We simulate the data by the following procedure. First, we simulate four
different Poisson alarms with an arrival rate of 1 and record the specific time at which the alarm
goes off for each of the four agents. We start by assuming that all of them have selected the default.
We then simulate the choices of each agent based on the order of the Poisson alarms. We start the
simulation for ¢ = 0 and continue until the time reaches T' from which we can collect the profile of
actions at different times that we indicate by {y1s, Yor, Yst, Yar fr<r. We assume that we can observe
when the agents select each alternative, including the default —Dataset 1 in the paper.
Estimation of CCPs With the simulated data, we can first estimate the CCPs of each agent by
using a simple frequency estimator. We use Agent 1 to illustrate the ideas. With a slight abuse of
notation, we indicate by ¢ the time at which the alarm of Agent 1 is off and reserve t', ¢”, and t"”
to denote the previous time at which the alarms of Agents 2, 3, and 4 were off, respectively. Then

the estimator of Py is

A #{t:t’<t,t"<t,t'”<t}{alt =, (Z/2t/> Y3, y4t’”) = y}
Pi(vly) = _ :
#{t:t’<t,t”<t,t”’<t}{(y2t’7 Ysi, y4t”’) = Y}

Table 1 displays the average of the estimated CCPs of Agent 1 for 1000 replications and 7" = 800
(about 800 choices per agent). We also present the true (population) CCPs calculated by using the
primitives of the model.

The nonparametric estimator performs reasonably well for 7" = 800 observations per agent. This
simple framework has four agents and three alternatives. For each agent, the configuration of the
choices of the other agents can take 3% = 27 values. Thus, one needs to estimate 27 probabilities
per agent. This requirement increases exponentially with the number of agents in the model.

Estimation of the Network We estimate the network using the nonparametric estimators

14



Table 1 — Agent 1’'s CCPs

estimates for different g,
population estimates y;, =0 ys=1 1y, =2
P1(1/00) 0.209 0.208 0.207  0.207  0.212
P1(1]01) 0.708 0.710 0.710 0.712  0.713
P1(1]02) 0.093 0.095 0.094 0.096  0.095
P1(1]10) 0.627 0.629 0.628  0.629  0.630
P1(1]11) 0.944 0.944 0.944 0945  0.943
Pi(1]12) 0.280 0.280 0.279  0.280  0.285
P1(1]20) 0.151 0.151 0.153  0.151 0.148
P1(1]21) 0.641 0.643 0.641 0.646  0.641
P1(1]22) 0.045 0.045 0.046 0.044  0.045
P1(2]00) 0.209 0.209 0.208 0.210  0.211
P1(2|01) 0.093 0.094 0.094 0.099  0.087
P1(2]02) 0.708 0.709 0.709 0.704  0.711
P1(2]10) 0.151 0.149 0.152  0.145  0.146
P1(2]11) 0.045 0.045 0.046 0.044  0.046
P1(2]12) 0.641 0.642 0.642  0.648  0.636
P1(2|20) 0.627 0.627 0.626  0.624  0.628
P1(2]21) 0.280 0.279 0.282 0.279  0.278
P1(2]22) 0.944 0.944 0.943 0945 0944

of CCPs we just described. We first recover the reference group of Agent 1 by following the
identification strategy in Proposition 3.1. Specifically, we compute the difference of the In of the
probability that Agent 1 selects alternative 1 when all other agents initially select the default and
the ones we obtain when we change, one by one, each other agent to alternative 1: AllnPy(1 | 0),
a=2,34.

Note that because we work with a finite sample, we cannot directly conclude that there is a
link when AlInP;(1|0) # 0. To decide whether there is a link or not, we implement a t-statistic
test with a sample-size-driven critical value. Specifically, we say that a is a peer of Agent 1 if and
only if ‘A}L InPy(1]0)/std(ALInPy(1 | O))’ > Kk, where kp = 0.15In T and std(A) is the estimated
standard error of A.! ? By following this criterion we calculate the frequency of correct estimates
of connections for for each agent in 1000 replications. We present the results in Table 2 for different
sample sizes. The results improve with the sample size, and the estimation performs reasonably
well when the sample size is about 2000.

To state whether Agents 2 or 3 are consideration-only peers we implement double differences —

'We use the estimated CCPs to bootstrap standard errors (Kline and Tamer, 2016).
2Any sequence that converges to 0 slower than 1/ VT will work asymptotically.
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Table 2 — Percentage of correctly estimated peers of Agent 1

Agent | Peer | T=800 | T=2000 | T=4000 | T=8000 | T=10000 | T=100000
2 Yes | 100.0 100.0 100.0 100.0 100.0 100.0
3 Yes | 100.0 100.0 100.0 100.0 100.0 100.0
4 No 66.2 75.1 79.5 81.3 82.8 91.6

as we do in the proof of Proposition 3.2. We use the population CCPs to illustrate the identification
strategy in Proposition 3.2. Specifically, to determine whether Agent 2 is a consideration-only peer

of Agent 1, we check the following double difference:

In P, (1]12) — In Py(1]10)] — [In P;(1]02) — In Py (1]00)]

= In (0.280) — In (0.627) — In (0.093) + In (0.209) = 0.

Since the difference is 0 we could conclude that Agent 2 is a consideration-only peer of Agent 1.

We conduct the same analysis for Agent 3,

In Py (1[21) — InPy(1]01)] — [In P;(1]20) — In Py (1]00)]

= In (0.641) — In (0.708) — In (0.151) + In (0.209) = 0.2256 % 0,

and conclude that Agent 3 affects the preferences and maybe consideration of Agent 1.

We apply the above double differences to the estimated CCPs with the same threshold rule
to address whether the peer is a consideration-only peer or not. The results of the simulation are
presented in Table 3. We can see that the percentage of correct estimates of the network increases

with the sample size.

Table 3 — Percentage of correctly estimated consideration-only peers of Agent 1

Agent | Consideration-only Peers | T=800 | T=2000 | T=4000 | T=8000 | T=10000 | T=100000

2 Yes 67.1 72.3 8.7 79.5 81.3 92.1
3 No 37.4 49.4 56.9 74.5 78.7 100.0

We finally identify whether Agent 3 affects both preferences and consideration. We follow the
identification strategy in Proposition 3.3. Instead of switching Agent 2’s choice from default to

alternative 2, we check the changes in Agent 1’s choice when switching the choice of Agent 2, the
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consideration-only peer, from the default to alternative 1 in the following double difference:

In Py (1]11) — InP;(1]01)] — [In P1(1]10) — In Py (1]00)]
= In (0.944) — In (0.627) — In (0.708) + In (0.209) = —0.8109 # 0.

Since the result differs from 0, we can correctly conclude that Agent 3 is a consideration-preference
peer of Agent 1.

The results of applying the same logic to estimated CCPs (with the same threshold rule) are
presented in Table 4. We can see that the percentage of correct network estimates increases with
the sample size. Moreover, even with a sample size of 800, we can correctly estimate the link in

99.8% of 1000 replicated samples.

Table 4 — Percentage of correctly estimated preference-only peers of Agent 1

Agent | Preference-only Peer | T=800 | T=2000 | T=4000 | T=8000 | T=10000 | T=100000
3 No 99.8 100.0 100.0 100.0 100.0 100.0

Estimation of Consideration Mechanism Once the network structure is recovered, we can
proceed to identify and estimate the consideration mechanism. First, given that Agent 2 is a
consideration-only peer of Agent 1, we can switch Agent 2 first and then Agent 3 from default to
alternative 1 to identify ratios of consideration probabilities of alternative 1 for different numbers

of peers selecting it —following the ideas in the proof of Proposition 3.4. Specifically, we get that

Qu(1[1) _ Py(1[10) _ 0627 _, _ 3/4
Q,(1/0) ~ Py(1j00)  0.209 1/4
N~~~
the ratio from the model
Qu1[2) _ Pi(1[11) _ 0.4 _ oy 1
Q,(1]1) P1(1]01) 0.708 3/4
N~

the ratio from the model

Assuming that when all consideration peers are picking the alternative, the alternative is considered
with probability 1, i.e., Q,(1|2) = 1, we can fully identify and estimate the rest of the consideration

probabilities. In particular,

P,(1/01)
QI =5 iy

P1(1]01) P4(1]00)
Qu(10) = Py(1]11) P4(1]10)°
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We estimate those consideration probabilities and present the bias and the root mean squared error

(RMSE) in Table 5 for different sample sizes with 1000 replications.

Table 5 — Consideration Mechanism

Consideration Probability | Performance | T=800 | T=2000 | T=4000

Q,(1]1) Bias 0.0022 | -0.0001 | 0.0002
RMSE 0.0723 | 0.0292 | 0.0151
Q,(1]0) Bias 0.0006 | 0.0037 | 0.0007

RMSE 0.0674 | 0.0255 | 0.0130

Estimation of Counterfactual CCPs and Choice Rule We now follow the proof of Propo-
sition 3.5 to identify and estimate the counterfactual CCPs. For instance, we can identify and
estimate the counterfactual CCPs if we shrink the menu from {0, 1,2} to {0,1}. We denote these
counterfactual CCPs as P7(1]00,{0,1}), where 00 denotes the previous choices of Agents 2 and
3, respectively, and {0, 1} indicates the counterfactual menu. Given the model primitives, this

counterfactual choice probability is given by

exp (3)

1+ oxp (3)
—_——
choice prob

P*(1]00, {0, 1}) = Q,(1]0) Ry (1[0, {0,1}) = 1/4 x ~ 0.2381.

The proof of Proposition 3.5 implies that

P1(1]20) — 2EF P1(1]00)  0.151 — 3 x 0.209

_Q(2|1) ~ —
S Re) 1=3

P%(1]00,{0,1}) = = 0.2380.

Hence, up to a numerical error, the results agree. Given the identified and estimated Q,(1]0) we

can recover

P1(1]20) — 2320 P1(1]00)

R;(1]0,{0,1
1( ’ { }) ( P1(2|20)> P1<1‘OO
P1(200)) Py (1]11)

A similar formula can be used to identify the rest of the counterfactual CCPs and the values of the
choice rules for each consideration set and agent. We estimate the counterfactual CCP and the

choice rules and present the bias and RMSE in Table 6 for different sample sizes in 1000 replications.
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Table 6 — Counterfactual CCP and Choice Rule

Probability Performance | T=800 | T=2000 | T=4000

P3(1]00, {0, 1}) Bias ~0.0041 | 0.0029 | 0.0007
RMSE | 0.0713 | 0.0278 | 0.0134
R1(1]0,{0,1}) Bias ~0.0153 | -0.0004 | 0.0022

RMSE 0.1949 | 0.0732 | 0.0368

C. The Empirical Application

This appendix offers supplemental material for the empirical application. First, we provide details
for the data we use for estimation. Second, we provide extra details about the network estimation
we use in the main text. Lastly, we conduct a robustness check of our empirical findings where we

allow own stores in nearby markets to affect payoffs.

C.1. Data

We purchased the tea chain expansion data from CnOpenData, a data marketing company that
scraps all the registration data from the National Enterprise Credit Information Publicity system.
This system, which is an information-query platform for all types of enterprises (market entities)
in the People’s Republic of China, was launched by the State Administration for Industry and
Commerce of the People’s Republic of China in February 2014. Users can employ it to search
for enterprise registration and filing details, license approvals, administrative penalties, records of
abnormal business operations, and other related information.

Enterprises are required to register at the local (city/district) Administration for Industry and
Commerce. For each new store, the enterprise has to register and provide the required information
to obtain the approval for operation —the required information includes the specific street location
of the store. The entry dates are the registration dates. If a store is closed, the enterprise is required
by law to update this information and the date of the change of status is recorded. The overall
framework, document standards, and processing time frames are unified nationwide by law, but
individual service windows may apply slightly different procedures.

The market characteristics, including population, Gross Regional Product (GDP) of the city

and area, were mostly collected from the China City Statistics Yearbook with two exceptions. First,
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the yearbook of 2016 - 2020 reported the registered population in the city in 2015-2019, but China
conducted its seventh national population census in 2020, so the population reported in the Yearbook
of 2021 is the resident population instead of the registered population in 2020. Second, the Yearbook
of 2018 only reported GDP in the Districts under City in 2017, excluding the suburban area. We
supplemented the missing of the total city GDP in 2017 and the registered population in 2020 through
the China Economic and Social Big Data Research Platform, which is a large-scale, integrated
statistical database that aggregates China’s official economic and social development data from
1949 to the present. It brings together all central-, provincial-, and major municipal-level statistical
yearbooks, as well as census reports, survey results and historical statistical compilations, covering
32 sectors and industries of the Chinese economy and society (https://data.oversea.cnki.net/).
We also used the Consumer Price Index from the National Bureau of Statistics of China to convert

the GDP into real terms (https://data.stats.gov.cn/english/easyquery.htm?cn=C01).

C.2. Estimation Details for the Network Structure

The vector of parameters 6 consists of two parts: the parameters of the network structure (i.e.,
NC,, a € A), and the parameters of the attention index and marginal profits. To maximize the
likelihood value by searching # in its parameter space, we can proceed as follows: In the inner
loop, fixing the network structure, we maximize the likelihood function over the consideration and
payoff parameters by using the profiled likelihood estimation. The outer loop then searches for the
network structure that leads to the highest likelihood.

The set of parameters in the inner loop —attention and payoff set of parameters— is rather
standard and does not pose any particular challenge. Unfortunately, checking all possible network
structures is often computationally prohibitive without some extra restrictions. In our application,

22><71><(71—1) — 29940 > 102400

the parameter space for (NC,)aeua, consists of possible network

structures (i.e., there are 2 x 71 x (71 — 1) binary variables). Even if we impose full symmetry, then

T-1)/2 — 92485 Instead, to simplify the estimation,

the size of the parameter space drops to 27!
we use spatial information about markets. In particular, we assume that if market m’ is in the
neighborhood of market m, then at least one of the following three conditions holds: m’ and m are
in the same province; the prefectures where m’ and m are located share a border; and/or m/' is at

least the 5-th closest (in terms of geographical distance) market to market m.
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With these additional constraints, the number of binary parameters describing the network

2563 possibilities.

structure is 563. Searching through all possible network structures still involves
To further facilitate the empirical analysis, instead of searching every possible network, we start
the search from the initial /largest possible network and then shut down one link at a time to find
the best improvement of the likelihood. We repeat this procedure until no link shutdown leads to

any improvement.® Though this method is only guaranteed to converge to a local optimum, we

believe that, in our application, it provides an informative approximation of the solution.

C.3. Robustness Checks: Own Stores in Nearby Markets Affecting Profits

In our benchmark analysis, we assume that only own and rival stores in the focal market can
affect the payoff of the firms in the focal market. This rules out spillover effects across different
markets due to various channels. A potential channel could be transportation cost saving, though,
as we argue in the paper, transportation costs seem minimal in the tea industry. Another potential
spillover channel could be due to information aggregation. To incorporate these potential spillover
effects, we relax our benchmark assumption and allow own stores in the nearby markets to affect the
firm’s profitability in the focal market. We still sustain that rival’s stores in the nearby markets only
affect consideration. That is, the number of rival stores in nearby markets still acts as the excluded
variable. We, moreover, assume that the consideration and preference networks for each market

coincide. As a result, the marginal profit and the attention index, respectively, are represented by

Tat(Se, N3 0) =S, 8r + [N s+ NEp oy Vrf
I /

2
+ > Nambps+ Y Nau| npy
a"eENg: fl'=Ff a' Ny fl'=F

7:1'at<st, Nt7 9) :S;ntﬁf + Z [N(f’,m)tdf,f/ + N(Qf’,m)t:yf,f’ +

f/
2
+> > Nabpp+ > Nat| fipp
Vil a! ENaZf”Zf' a’/GNaZf”Zf'

3This heuristic algorithm is a variation of a greedy optimization algorithm. See Kitagawa and Wang (2023) for a
recent application in the context of treatment allocation in sequential network games.
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We present the estimated consideration and expansion probabilities in Figures 1 and 2. We find
that the directions of the effects are similar to the ones in the main paper. Both firms displayed
limited consideration initially but became almost full consideration at the end of the measurement
period because of the increased number of stores in different markets. As in the main paper,
the expansion probabilities estimated under full consideration substantially underestimate the

profitability of markets.
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Figure 1 — Normalized histogram of consideration probabilities for both firms at the data’s
beginning and end.
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Figure 2 — Limited consideration vs. full consideration expansion probabilities.
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